Editorial Introduction

In this issue of the International Journal of Educational Review Vol. 1, Issue 3, we are pleased to feature two outstanding contributions.

The first article, authored by Professor Yang, draws on his rich educational experience to analyze how the steady progress of artificial intelligence has enabled the application of computer vision (CV) in vocational education. The study further proposes and validates a multimodal teaching framework that not only enhances learning outcomes but also alleviates the repetitive workload of teachers, thereby providing new insights into the digital transformation of vocational education. The second article, contributed by Zhang, employs interview-based research to explore the challenges faced by master's students in the post-pandemic era, particularly regarding the heightened pressure of job placement. The paper examines the underlying causes of this stress and offers potential strategies for mitigation, shedding light on an important issue of global concern in higher education.

Together, these works reflect the journal's commitment to advancing both theoretical and practical discussions in contemporary education, and we hope they will inspire further academic inquiry and practical innovation.

Table of Contents

Research Article

Design and Preliminary Application of a CV-Based Multimodal Teaching Support System for Higher Vocational Education

Xiaoxue YANG 1-12

Employment Pressure of Master's Graduates in the Post-Pandemic Era: An Interview Study of Ten Graduate Students

Jingyue ZHANG 13-22

Published September 29, 2025 Place of publication: Kyoto, Japan Contact: <u>info@janfs.org</u> (Email)

INTERNATIONAL JOURNAL OF EDUCATIONAL REVIEW

Vol.1, Issue 3 (2025)

ISSN: 2760-2427(Print) 2760-2435 (Online) HOMEPAGE: https://www.janfs.org

Design and Preliminary Application of a CV-Based Multimodal Teaching Support System for Higher Vocational Education

Yang Xiaoxue

Wuhan Vocational College of Software and Engineering, Wuhan, Hubei, 430205

Email: shirly520123@gmail.com

KEYWORDS	ABSTRACT
Computer Vision;	In recent years, the steady progress of artificial intelligence has
Multimodal Educational	brought computer vision (CV) into the spotlight of educational
Technology;	research. Compared with traditional approaches that mainly depend on
Higher Vocational	text or speech, CV is capable of processing multiple information
Education;	streams—such as images, recognized text, and structural features—and
Teaching Assistance;	reorganizing them into meaningful teaching resources. This ability
Intelligent Classroom	makes it possible to support classroom instruction in a way that is
ARTICLE HISTORY Received: 09/04/2025 Revised: 09/13/2025 Accepted: 09/15/2025	more visual, interactive, and efficient. For higher vocational education, where learning tasks are strongly practice-oriented and course materials often contain diagrams or graphical elements, such technologies are particularly relevant. This paper examines how CV-based multimodal techniques can be applied in vocational teaching, with specific attention to resource management, knowledge extraction, and interactive support in the classroom. A prototype framework was designed, integrating functions such as network topology identification, keyword extraction from slides, and the digital capture of handwriting from blackboard work. When tested in teaching scenarios, the system showed promise in improving students' understanding and participation, while also reducing repetitive tasks for instructors. The study therefore provides both a conceptual foundation and preliminary practical evidence for advancing the digital transformation of vocational education.

1. Introduction

1.1 The Need for Digital Transformation in Higher Vocational Education

The rapid evolution of information and communication technologies is reshaping the landscape of higher vocational education, gradually moving it away from

Copyright 2025 by author(s) This work is license under the CC BY 4.0 DOI:10.64583/b0j1xn67

1

conventional classroom practices and toward digital, intelligent, and more interactive modes of learning. Vocational training, by nature, stresses hands-on practice and direct application, which creates higher expectations for timely feedback, abundant resources, and immersive learning experiences. In recent years, government initiatives have also underscored the importance of "digital empowerment" and "integration between industry and education," further accelerating the incorporation of emerging technologies into daily teaching. Against this backdrop, a key question emerges: how can new technologies be effectively employed not only to visualize complex instructional content but also to stimulate active learning and improve the overall student experience? Addressing this question has become central to advancing both the quality and sustainability of vocational education.

1.2 Gaps in Traditional Teaching and Challenges in Practice-Oriented Courses

Although the adoption of multimedia tools and online platforms has improved classroom delivery to some extent, substantial limitations remain in practice-oriented courses(Huang, Li, & Zheng, 2025). Instructional materials are still frequently confined to static slides and textbook illustrations. These resources lack intelligent processing capabilities, leaving teachers with few tools to highlight essential concepts in real time. Moreover, many abstract topics—such as computer network topologies, routing mechanisms, or communication protocols—are highly dependent on visual representations, yet students often struggle to construct accurate mental models from simple diagrams or text-heavy explanations. Another persistent problem is the transient nature of classroom activities: blackboard notes and in-class demonstrations are rarely recorded or archived, depriving students of valuable review materials. Such deficiencies reduce the practical effectiveness of vocational training, weaken students' ability to consolidate knowledge, and ultimately hinder the transfer of classroom learning into real-world professional skills.

1.3 Research Purpose and Novelty

To address these challenges, the present study investigates the application of computer vision (CV)-based multimodal technologies in vocational education. The primary objectives are threefold:

To design a CV-supported framework capable of automatically identifying, extracting, and reorganizing instructional resources in ways that better suit the demands of vocational courses; To develop and evaluate functional modules—including topology recognition, slide-based keyword extraction, and blackboard content digitization—that aim to improve the clarity, accessibility, and informatization of classroom teaching; To test the effectiveness of these modules in authentic teaching contexts, with particular attention to student participation, learning outcomes, and the reduction of teachers' repetitive workloads.

The study makes several contributions. First, it introduces multimodal CV techniques into vocational education in a structured and systematic manner, extending the scope of educational technology beyond traditional text- and speech-based approaches. Second, it proposes practical strategies for visual resource recognition and processing that directly respond to the graphical and experimental characteristics of vocational curricula (Yang, Bu, & Li, 2025). Finally, the research establishes a

meaningful link between technological development and classroom practice, laying a foundation for future teaching-assistance models that can be adapted, scaled, and continuously optimized across diverse institutions and disciplines.

2. Literature Review

2.1 Applications of Computer Vision in Educational Technology

During the last decade, computer vision (CV) has gradually moved from technical laboratories into educational settings. Researchers abroad have experimented with diverse applications, ranging from automated grading to behavioral analysis. For instance, optical mark recognition is now widely used to score multiple-choice exam sheets, a practice that has saved instructors countless hours. Other projects have employed video analytics to map students' attention shifts or even track patterns of collaboration within groups. In the context of laboratory safety, CV-based detection systems have been piloted to identify whether students are wearing protective gear or following required procedures.

China has also witnessed a growing interest in CV for education, though the initiatives tend to remain exploratory. Some teams have tested blackboard recognition systems; others have looked at classroom expression monitoring to gauge student engagement. Even attendance-taking through facial recognition has been reported in several institutions. These studies illustrate the flexibility of CV across different environments. Yet, as many practitioners point out, most of these applications feel more like isolated experiments than integrated solutions. Teachers often find them useful for demonstration but not easy to incorporate into their daily routines. This mismatch reveals that while CV is promising, its educational role is still developing and somewhat fragmented.

2.2 The Value of Multimodal Information Processing in Teaching

Classroom teaching is never confined to a single mode of communication. A teacher may speak, write on the board, gesture toward a diagram, and respond to students' questions—all within a few minutes. Because of this complexity, multimodal processing has become a vital research direction. Integrating images with text or combining transcripts with speech recordings can create resources that go beyond what any single channel provides (Wang, Wang, & Zheng, 2021). Automatic lecture summaries and knowledge navigation maps are two examples that have already shown practical value.

However, CV-dominant multimodality remains underexplored. Unlike approaches that treat text or audio as the main channel, CV-oriented methods take images and diagrams as the central input, adding OCR text or structural features as supportive layers. This could be particularly powerful in visually intensive courses. Even so, many of the systems developed so far stop at the technical demonstration stage. A common frustration expressed by teachers is that while prototypes may generate neat outputs, they rarely align with actual classroom needs. Some blackboard recognition models, for example, struggle with messy handwriting or diagrams drawn

in haste, which reduces their reliability. In other words, the technology often looks polished in conference papers but far less convincing in real classrooms.

2.3 Characteristics and Challenges of Higher Vocational Education Curricula

Higher vocational education is distinct from general academic programs because it focuses on cultivating job-ready skills. Students are not only expected to understand theories but also to demonstrate competence in authentic practice scenarios. This dual demand creates both opportunities for innovation and challenges in implementation. On the one hand, vocational curricula are deeply practice-oriented. Teachers frequently rely on demonstrations, case studies, and repeated training exercises. Yet, static slides and textbook figures cannot capture the dynamism of real processes. As a result, many students resort to rote memorization, which undermines the very goal of skill integration.

On the other hand, abstract concepts pose particular difficulties. Networking courses are a clear example: topological structures, routing mechanisms, and data flows can be extremely hard to visualize. Blackboard sketches and textual explanations are rarely sufficient, and even complex diagrams risk overwhelming students with detail. Teachers often report that learners either "get lost in the arrows and boxes" or simply memorize without real comprehension.

Finally, maintaining student motivation is a continuous challenge. Many vocational learners rely heavily on direct visual input and timely feedback to stay engaged. Traditional lecture-based models often fail to provide this, leading to passive behaviors such as "watching without doing" or "doing without understanding." Such patterns are especially damaging in vocational contexts, where active participation is crucial. Together, these issues reveal the pressing need for technological support that can make abstract concepts visible, preserve teaching traces, and keep students actively involved.

2.4 Research Gaps and Points of Entry

Despite increasing attention, the current body of literature leaves several gaps when viewed through the lens of vocational education. Much of the work has focused on primary, secondary, or general university settings, where exam grading or classroom monitoring dominate. The specific requirements of vocational curricula—skills training, operational competence, and hands-on integration—are less frequently addressed.

At the application level, most studies deal with single, isolated tasks. A system might perform blackboard recognition, another might analyze student expressions, but these remain siloed. What vocational teaching requires is not a collection of isolated tools but a connected framework, one that links topology recognition with slide-based keyword extraction and the archiving of lecture traces. Only when these modules function together can technology offer real classroom value.

Another weakness is the shortage of long-term, empirical validation. Many published studies showcase impressive prototypes, yet they rarely track actual improvements in student comprehension or reductions in teachers' workload.

Questions that matter most to educators—whether these systems genuinely make abstract topics clearer, or whether they help save preparation time—are often left unaddressed. Some teachers even report that trial systems increase their burden, as they must correct recognition errors or manage additional software.

To respond to these issues, this study selects information technology courses in vocational education as a test case. The proposed CV-based multimodal framework is deliberately designed to match the graphical and practice-oriented character of such courses. By integrating multiple modules into a coherent system and testing it with experimental and control groups, the research aims not only to extend methodological innovation but also to provide practical evidence of effectiveness. In doing so, it attempts to bridge the gap between technological promise and classroom reality, a step that is often missing in current literature.

3. Theoretical Framework and Research Approach

3.1 Definition and Scope of Multimodal Educational Technology

In a typical networking class, the same concept often appears in three guises: a rough star-topology sketch on the board, a polished diagram on the following slide, and a passing remark that "links are swapped at the hub." Multimodal educational technology, as used in this study, refers to the attempt to stitch together such scattered traces—visual, textual, and behavioral—into reusable learning units.

While in principle multimodality could involve speech, gesture, or even biometric data, our focus is on computer vision (CV)-driven fusion, because vocational courses are unusually visual. We prioritize three modalities: (i) the image stream, covering slides, topology diagrams, and lab photos; (ii) the text stream, extracted from board notes or slides via OCR; and (iii) structured features, such as classification results, keyword lists, or semantic tags. Once integrated, these resources no longer remain fragmented. Instead, they are reorganized into "review cards" or linked knowledge nodes that students can revisit after class.

It is worth noting that this definition is not merely aspirational. We explicitly set aside other multimodal channels such as speech recognition, because pilot runs showed that noisy labs and heavy accents produced unstable transcripts that required more editing than they saved. OCR and lightweight image analysis, in contrast, proved robust and easy for instructors to tolerate (Wang & Xu, 2024). This kind of pragmatic narrowing of scope is essential if multimodality is to serve education rather than remain a technical showcase.

3.2 Pedagogical Anchors for the Study

Educational theory is not included here for decoration; it acts as a day-to-day guardrail against technological drift. Three perspectives shape the present framework.

First, the TPACK model (Technological Pedagogical Content Knowledge) reminds us that CV tools have to sit within a triangle of subject content and teaching method. In our setting, this means aligning topology recognition with the actual learning objectives of network fundamentals, and pairing it with pedagogical strategies such as case demonstrations or problem-based lab tasks.

Second, Cognitive Load Theory alerts us to the hidden cost of excessive information. Students in networking classes often get lost when diagrams exceed a certain size—roughly more than eight labeled nodes or three layers of arrows. Our system therefore applies a rule of thumb: complex diagrams are broken down into progressive reveals (first functions, then links, then flows). In early pilot sessions, this cut the number of clarification questions about diagrams almost in half.

Third, the idea of human-machine collaboration shapes how the system is positioned in class. Teachers focus on logic, pacing, and interaction, while the system performs repetitive tasks: capturing notes, generating keyword prompts, archiving diagrams. Importantly, the system does not overwrite a teacher's emphasis. If OCR confidence drops below 0.85 or a symbol is ambiguous, the item is stored as a clipped image with a timecode, leaving the decision to the instructor. This safeguard prevents the system from dictating the lesson and reassures teachers that they remain in control.

3.3 A Working Integration Scheme for CV in Vocational Education

Rather than a neat four-stage pipeline, our integration behaves more like a gated weave. Tasks do not always flow forward smoothly; some are paused, flagged, or routed differently depending on classroom conditions.

- Input. The system ingests whatever is available: slides, ad hoc board sketches, photos of lab setups, even snapshots taken by teaching assistants. Lighting and glare are variable, so input quality is uneven.
- Processing. Topology recognition runs first. If shapes are borderline (e.g., star vs. snowflake), the classifier attaches a "verify" tag and skips forced labeling. OCR then parses board notes; items below 0.85 confidence are preserved as timestamped image clips rather than text. Only after this gated pass do we fuse items into structured "review cards."
- Application. In practice, when students confuse ring and bus topologies, the teacher can tap a card; the system overlays the corresponding diagram, highlights the missed link rule, and reconnects it to the earlier slide. After class, those cards are bundled into short recap sets (≤10 items) rather than long transcripts, which students report are easier to study from.
- Outcome. The expected benefit is fewer repeat explanations and more concise review material. But caveats remain: dim lighting and glossy boards reduce OCR accuracy; some teachers prefer handwriting over slides, which generates noisy inputs. To address this, we distributed dark-background board templates and built a one-click capture tool for assistants.

Finally, the integration is framed by data and governance rules. All captured artifacts follow an opt-in consent protocol: raw images are retained for 14 days by default, after which they are deleted; only derived text and annotated diagrams persist as course metadata. This explicit boundary-setting is crucial for teacher acceptance, and is often overlooked in purely technical accounts of "intelligent classrooms."

4. Research Strategy and Methodology

4.1 Topology Recognition Module

Network topology is a cornerstone concept in computer networking but also one of the most abstract. Instructors often complain that students mix up ring, bus, and star structures even after repeated explanations. To ease this, we built a topology recognition module that processes both slides and board sketches.

For the backbone, we compared several CNN models. VGG16 was quickly discarded: on our classroom machine (a single GTX 1060), inference took ~2.5 seconds per image, which was unacceptable in live lectures. ResNet18 achieved ~84% accuracy on a hand-drawn dataset of 600 student sketches, with inference under 0.5 seconds. MobileNetV2 was slightly faster (0.3s) but slightly less accurate (~82%). We chose ResNet18 as the default, with MobileNetV2 as fallback on lower-end devices.

But accuracy numbers only tell part of the story. In practice, students' sketches are messy. A star missing one edge was often predicted as a tree. Rather than force labels, we built a "verify" flag: if confidence <0.80, the system outputs the image as-is and prompts the teacher (He & Mi, 2025). During one pilot, a snowflake-like sketch confused both the model and half the class—our overlay highlighted the missing hub, turning the mistake into a discussion point. Teachers later told us they appreciated that the system "admitted uncertainty" instead of misleading everyone.

4.2 PPT Keyword Extraction Module

Vocational slides tend to be overloaded: multiple protocols, acronyms, and diagrams squeezed into a single page. Students try to copy everything and miss the key points. Our keyword extraction module combines OCR with TF–IDF ranking to pull out ~5–10 keywords per slide. We initially tested neural abstractive summarizers but abandoned them: bilingual slides (English technical terms + Chinese notes) confused the models, and generation lag (~3–4s) broke the lecture flow. OCR + lightweight ranking produced predictable results in <1s. Importantly, teachers can override the system: they can "pin" important terms (e.g., TCP/IP) or discard irrelevant ones (e.g., random slide footers). This manual control reassured instructors that the system would not dictate emphasis.

Feedback was mixed but useful. Many students said the real-time keywords helped them reorient when they lost track. One class reported fewer "what did you just say?" interruptions. But some complained that keywords alone lacked context—"routing table" appeared without explanation, leaving them uncertain. Teachers also raised a concern: the overlay of keywords on slides sometimes distracted from diagrams. In response, we added an option to export keywords into a recap sheet instead of projecting them live.

4.3 Blackboard Recognition Module

Blackboard writing remains indispensable in vocational classes, especially for step-by-step derivations. Yet chalk notes disappear once erased. Our blackboard recognition module captures these traces through mounted cameras.

Preprocessing (denoising, contrast adjustment, edge detection) is followed by handwriting OCR. Results vary wildly: chalk dust, cursive writing, and arrows

overlapping text often reduce accuracy. In one trial under fluorescent glare, accuracy dropped to \sim 60%, far below usable. We responded with dynamic thresholding and a fallback: tokens below 0.85 confidence are saved as cropped images with timecodes.

Students valued the resulting "knowledge traces." Being able to replay how a formula was derived—rather than just the final result—was cited as "a lifesaver" in exam prep(Jiang & Sun, 2025). Teachers also reused digitized notes the following semester. But problems remain: one instructor joked that her chalk writing was misread as three different English words; another worried that constant camera capture could intimidate shy students. These comments remind us that technical feasibility does not guarantee pedagogical acceptance.

4.4 From Data Flow to Classroom Use

Rather than the rigid "four layers" often depicted in system diagrams, our framework behaves more like a weave with checkpoints.

- Gathering Inputs. The system accepts whatever is available: slides, sketches, snapshots of lab setups—even phone photos submitted by students. Quality is inconsistent, so metadata such as device type and resolution are stored.
- Making Sense of Noisy Data. Recognition runs in stages. Topologies are classified first; uncertain cases are tagged rather than mislabeled. OCR follows, with low-confidence text preserved as images. Fusion then produces compact "review cards."
- In-Class Use. Teachers can project overlays when misconceptions arise, or ignore them if flow matters more. Students receive recap sets capped at ~10 items/session; one group said they were "less overwhelming than a transcript." Yet not everyone was happy: a few learners asked for longer summaries, suggesting the need for personalization.
- Closing the Loop. Logs capture how often teachers accept suggested keywords, or how many students revisit review cards after class. These are not just for algorithm tuning; they inform pedagogy. For example, frequent replays of subnet-mask diagrams flagged a gap in prior knowledge.

4.5 Data Governance and Practical Constraints

Technology alone does not decide adoption—policies and perceptions do. In our pilot college, the IT department insisted that all raw video remain on local servers, not cloud platforms. Teachers also requested signed student consent before recording, which delayed deployment by two weeks. As a compromise, we set retention to 14 days for raw images, while derived text and diagrams persisted as course metadata. Interestingly, teachers accepted the system more readily once governance was explicit. One put it bluntly: "I don't want to discover next year that my blackboard doodles are on YouTube." Such concerns show that intelligent classrooms require not just algorithms but social contracts.

5. Application Scenarios and Experimental Design

5.1 Experimental Context: Information Technology Courses

We chose Fundamentals of Computer Networking as the pilot course. Each class had about 48 students, and the facilities were modest: two labs with 25 working PCs each, some quite outdated. Teachers frequently noted that students struggled with the "invisible" nature of networks—data packets, routing paths, or topological differences. These were ideal pain points for testing whether CV-based assistance could help.

Networking was not the only candidate. Operating systems and database fundamentals showed similar needs, but networking stood out because diagrams, flows, and protocols dominate its instruction. The trial spanned a 16-week semester, covering 12 units. Some classes were recorded in labs; others were standard lecture halls with poor lighting, which created very different conditions for the system.

5.2 Teacher-Side Functions in Practice

Teachers had mixed feelings. Several enjoyed not having to redraw topologies—"finally I can save my chalk for real explanations," one said. But others disliked the timing: overlays sometimes popped up just as they were building suspense for a question, which broke their rhythm. One senior instructor even disabled the overlay function halfway through the semester, preferring to rely on recap sheets instead.

The auto-generated "course summaries" were convenient but also raised concern. A few teachers worried that students had stopped taking their own notes: "I looked around and saw half the class staring at the system's recap screen instead of writing anything." While time-saving, the summaries shifted classroom habits in unexpected ways.

5.3 Student-Side Experience

Students valued the recap sets most. Getting 8–10 cards per lecture was less overwhelming than a transcript. One group joked that they "revised on the bus as if they were flipping Pokémon cards." But not everyone was convinced: a few deliberately ignored the cards, saying they trusted their handwritten notes more.

Real-time keywords also split opinions. Many used them to stay on track, but several students found them distracting when they appeared over diagrams(Huang & Liang, 2025). One day, the projector lagged by three seconds, causing students to laugh and the teacher to shut the feature off in frustration. In labs, however, the digitized diagrams were praised; groups could compare their wiring against the overlay, catching mistakes earlier. Still, some students felt uneasy about being filmed all the time, and one remarked, half-jokingly, "It feels like Big Brother is also enrolled in our class."

5.4 Comparative Design and Evaluation

Two parallel classes served as experimental and control groups, both around 45 students, average age 19. The experimental class used the CV system throughout; the control class followed conventional methods.

Results were uneven. On final exams, the experimental group's average was about 8% higher, but variation was large: in some units the gap was 15%, in others

negligible. Lab tasks showed clearer benefits: average completion times were shorter, but three groups still struggled with basic cabling despite having overlays. Engagement logs revealed heavy use of recap cards (over 70% of students accessed them weekly), but classroom discussions did not increase much. Teachers saved time on redrawing diagrams but spent extra time troubleshooting OCR misreads.

In short, the system improved clarity and saved effort in some areas, but it did not magically transform participation. Adoption turned out to be situational—dependent on teacher style, classroom conditions, and even projector performance.

6. Preliminary Conclusions and Future Prospects

6.1 Research Conclusions

This study carried out a preliminary but systematic exploration of how computer vision (CV)-based multimodal technologies may support higher vocational education. After surveying both domestic and international research, we proposed a CV-centered framework tailored to the practical features of vocational curricula. Key modules—such as topology recognition, slide keyword extraction, and blackboard digitization—proved technically feasible in pilot testing.

Beyond feasibility, these modules demonstrated clear pedagogical value. Students found it easier to grasp abstract concepts when visual overlays and recap sets were available, and teachers reported less repetitive effort in redrawing diagrams or reorganizing board notes. Compared with prior intelligent education research that mainly emphasized text or speech modalities, this work highlighted the visual modality as the central driver—arguably more suitable for practice-oriented and graphically rich courses. Overall, the study indicates that CV-based multimodal assistance has both theoretical significance and practical utility, laying a foundation for future scaling.

6.2 Research Limitations

Several limitations need to be acknowledged in interpreting these findings. On the data side, the models were trained on relatively small and self-constructed datasets—for example, only about 600 student sketches were available for topology recognition—which inevitably raises concerns about generalization. In terms of scope, the present study was conducted within the domain of information technology courses, and the extent to which the framework can be applied to other fields such as nursing, mechanical engineering, or applied arts remains untested. Another limitation lies in the duration of the pilot: with only one semester of implementation, it is difficult to draw conclusions about long-term effects on sustained learning outcomes, skill transfer, or changes in teaching workload.

In addition to these technical and methodological constraints, there are also social and cultural considerations. Teachers and students did not respond uniformly; some embraced the system with enthusiasm, while others expressed hesitation. Concerns ranged from over-reliance on system-generated summaries, which might weaken independent note-taking, to unease about the constant presence of classroom

cameras. These reactions suggest that future scaling of the system will depend not only on algorithmic improvements but also on thoughtful management of acceptance and trust.

6.3 Future Directions

Future research should build on these lessons in several ways. One urgent task is the development of large-scale, multi-disciplinary, and multi-context datasets for vocational education. Such resources would significantly improve model robustness and enable replication across different institutional settings. Another important avenue is the expansion of application scope. While this study focused on information technology, vocational courses in areas such as mechanical engineering, electrical engineering, or nursing contain distinctive visual resources—ranging from circuit diagrams to anatomical sketches—that can test and extend the adaptability of CV-based approaches.

Equally critical is the integration of CV technologies with large language models. Combining visual recognition with generative language capabilities could enable new functions, such as automatic drafting of lab reports, the creation of structured learning summaries, or personalized feedback for students(Zhang et al., 2023). At the same time, this direction requires safeguards against over-dependence, ensuring that learners continue to engage actively with core concepts rather than simply consuming machine-generated content.

In parallel, evaluation and deployment strategies need to evolve. Short-term pilots must give way to long-term, real-classroom studies that establish a closed loop from data collection to intelligent processing, instructional support, and feedback optimization. Cost—benefit analysis, infrastructure requirements, and teacher training should be considered alongside algorithmic refinement, since sustainability hinges on practical integration into everyday teaching. Finally, issues of governance and ethics must not be overlooked. Questions about data storage, retention policies, consent mechanisms, and teacher autonomy are central to whether intelligent classrooms will gain acceptance. Some partner institutions have even suggested involving student–teacher committees in co-designing usage protocols, which could serve as a model for building legitimacy and trust.

6.4 Concluding Remarks

In summary, CV-based multimodal technologies offer a promising pathway for the modernization of vocational education. The study demonstrates that they can improve conceptual clarity, preserve valuable instructional traces, and reduce repetitive workload, while also surfacing challenges related to adoption and governance. These technologies should be seen not as replacements for existing pedagogy but as strategic complements that support teachers and empower students.

With continued data enrichment, cross-disciplinary trials, and careful integration of governance measures, this line of research is expected to show wider potential across vocational domains. The ultimate goal is to guide higher vocational education toward more intelligent, responsive, and learner-centered development—one that respects

existing practices while opening new opportunities for digital transformation.

References

- He, M., & Mi, H. (2025). Advantages, concerns, and prospects of applying multimodal large models to ideological and political education. School Party Building and Ideological Education, (11), 79–82. https://doi.org/10.19865/j.cnki.xxdj.2025.11.017
- Huang, W., & Liang, G. (2025). Intelligent construction of multimodal ethnic mathematics education resources and curriculum practice. Journal of Primitive Ethnic Culture, 17(4), 143–152. https://doi.org/10.3969/j.issn.1674-621X.2025.04.015
- Huang, Z., Li, G., & Zheng, Y. (2025). Empowering the high-quality development of science education through multimodal large models: Potentials, challenges, and applications. China Educational Technology, (6), 60–69. https://doi.org/10.3969/j.issn.1006-9860.2025.06.009
- Jiang, H., & Sun, Y. (2025). Ethical reflections and governance strategies of multimodal large models in ideological and political education. School Party Building and Ideological Education, (6), 66–69. https://doi.org/10.19865/j.cnki.xxdj.2025.06.018
- Wang, X., & Xu, X. (2024). Multimodal emotion recognition in online education considering credibility bias. Sensors and Microsystems, 43(11), 122–126. https://doi.org/10.13873/J.1000-9787(2024)11-0122-05
- Wang, Y., Wang, Y. C., & Zheng, Y. (2021). Multimodal learning analytics: A new trend in intelligent education driven by multimodality. China Educational Technology, (3), 88–96. https://doi.org/10.3969/j.issn.1006-9860.2021.03.013
- Yang, X., Bu, H., & Li, X. (2025). Promoting the deep application of multimodal large models in education: Value empowerment, scenario construction, and implementation strategies. Chinese Journal of Education, (4), 9–14.
- Zhang, X., Li, W., Zhang, S., et al. (2023). Data-enabled teaching decision-making: From educational data applications to multimodal learning analytics for instructional support. E-educational Research, 44(3), 63–70. https://doi.org/10.13811/j.cnki.eer.2023.03.009

Author Biography

Yang Xiaoxue, Wuhan, Hubei, Wuhan Vocational College of Software and Engineering, Master, Associate Professor, Research area: Artificial Intelligence

INTERNATIONAL JOURNAL OF EDUCATIONAL REVIEW

Vol.1, Issue 3 (2025)

ISSN: 2760-2427(Print) 2760-2435 (Online) HOMEPAGE: https://www.janfs.org

Employment Pressure of Master's Graduates in the Post-Pandemic Era: An Interview Study of Ten Graduate Students

Zhang Jingyue

China University of Geosciences (Wuhan)

Email: 2890311972@qq.com

KEYWORDS	ABSTRACT
employment pressure	The outbreak of COVID-19 at the end of 2019 not only had a severe
graduate students;	impact on China's national economy but also created tremendous
post-pandemic era;	pressure on the employment of college graduates. Despite significant
	progress under the efforts of the Party and government, the overall
ARTICLE HISTORY Received: 07/02/2025 Revised: 09/20/2025 Accepted: 09/29/2025	employment situation remains grim. In order to better understand the
	employment pressure of master's graduates in the post-pandemic era,
	this study conducted interviews with 10 graduates of the class of 2021.
	The findings reveal several issues, including a severe employment
	situation, shrinking job opportunities, psychological anxiety, and a
	tendency to prefer stability in job choices. Therefore, it is suggested that
	the government optimize the employment environment, universities
	improve employment guidance systems, and individual master's
	graduates reasonably adjust their job expectations. Joint efforts from all
	three parties are required to alleviate employment pressure.

1. Introduction

The so-called "post-pandemic era" does not mean the complete disappearance of COVID-19 or a full return to pre-pandemic normalcy. Rather, it refers to an era in which the pandemic may recur intermittently, with small-scale outbreaks, imported cases from abroad, and seasonal resurgences, thereby producing long-term and profound impacts across multiple sectors (Wang, 2020).

Since its outbreak in late 2019, COVID-19 spread rapidly across China, with all regions entering a first-level public health emergency response. The pandemic disrupted the employment plans of graduates and further intensified the already severe job market. On February 23, 2020, General Secretary Xi Jinping emphasized at a central meeting on coordinating epidemic prevention and control with economic and social development that Copyright 2025 by author(s) This work is license under the CC BY 4.0

DOI: 10.64583/7p6q5p64

particular attention should be paid to graduate employment, urging coordinated efforts in graduation, training, and recruitment so that graduates can complete their studies and secure employment smoothly (People's Daily, 2020). Later, at the Politburo meeting on April 17, Xi once again stressed that graduate employment must be a top priority.

At the same time, graduate student enrollment has expanded significantly. The number of graduate students graduating annually increased from 324,000 in 2009 to 510,000 in 2018—an increase of 57.4% within a decade (Pan, Zhang, & Liu, 2020). By 2020, the total number of graduate students in China exceeded 3 million. Combined with the downward economic pressures and the pandemic's disruption, master's graduates faced dual challenges in employment. Indeed, in the 2020 Government Work Report, "employment" appeared 39 times, the highest frequency in history (Li, Sun, Wu, & Shan, 2020).

This study focuses specifically on the employment pressure of graduate students in the post-pandemic era. Through a qualitative case study of 10 graduates, it aims to examine the current state of graduate employment pressure, analyze the underlying causes, and propose targeted countermeasures and suggestions.

2. Methodology

This study adopts a qualitative research paradigm using purposive sampling. In selecting cases, individuals who could provide the most relevant information to the research questions and objectives were chosen. A total of 10 full-time academic and professional master's students from the graduating class of 2021 were interviewed. Their disciplines included education, management, mineral exploration, design, and mechanical engineering, with attention paid to gender differences.

The basic information of the 10 cases is shown in Table 1 (all names are pseudonyms).

- Student A: Female, China University of Geosciences (Wuhan), Educational Economics and Management, Academic Master
- Student B: Female, China University of Geosciences (Wuhan), Educational Economics and Management, Academic Master
- Student C: Female, China University of Geosciences (Wuhan), Education, Academic Master
- Student D: Female, China University of Geosciences (Wuhan), Educational Economics and Management, Academic Master
- Student E: Male, China University of Geosciences (Wuhan), Basin and Energy Resources, Academic Master
- Student F: Female, China University of Geosciences (Wuhan), Education,

Academic Master

- Student G: Male, Huazhong University of Science and Technology, Mechanical Engineering, Professional Master
- Student H: Female, Huazhong University of Science and Technology, Mechanical Engineering, Professional Master
- Student I: Female, Central China Normal University, Chinese Language Education, Professional Master
- Student J: Male, Shanghai Normal University, Landscape Design, Academic Master

Data Collection Methods

1. Interview Outline Development

Before the formal interviews, the researcher adapted the interview outline developed by Ying (2015) in *An Empirical Study on the Employment Pressure of Full-Time Professional Master's Degree Students*. Two graduates were selected for pilot interviews, after which the outline was revised accordingly to form the final interview protocol.

2. Semi-Structured Interviews and Informal Conversations

Interviews were conducted through both face-to-face meetings and remote voice calls, each lasting approximately 30 minutes to 1 hour. With participants' consent, all sessions were audio recorded, and observations of expressions and tone were noted. Afterward, the recordings were transcribed verbatim for analysis.

3. Severe Employment Situation: Pandemic Exacerbates Supply-Demand Imbalance

3.1 Decline in Labor Market Demand

The COVID-19 outbreak in early 2020 had a profound impact on China's economic and social development. The dual effects of economic downturn and pandemic forced many small and medium-sized enterprises (SMEs) to reduce recruitment plans. A survey conducted in February 2020 by Professor Zhu Wuxiang at Tsinghua University's School of Economics and Management covering 995 SMEs showed that 22.43% of enterprises planned to reduce staff and cut salaries, while 16.2% intended to suspend operations, directly reducing employment opportunities in the short term (Zhu, Zhang, Li, & Wang, 2020). According to Gao (2020), COVID-19 resulted in an estimated loss of 84 million jobs in the first quarter of 2020 and about 23 million jobs across the whole year.

Interviewees reflected these realities. Student G (Mechanical Engineering, HUST) noted: "The pandemic changed hiring timelines. Internet companies recruited many top

candidates earlier than usual. By the time regular recruitment started, most positions were gone."

Student H, also in Mechanical Engineering at HUST, added:

"In previous years, many of our graduates went to Huawei, but due to sanctions, Huawei recruited far fewer people this year."

Similarly, Student I (Chinese Education, CCNU) shared that her goal was to secure a teaching post:

"Because of the pandemic, many schools reduced hiring. Key demonstration schools hardly recruited at all."

Student J (Landscape Design, SHNU) explained that company downsizing led to "increased competition, as only highly versatile and top-performing candidates were considered."

3.2 Increasing Competition Among Job Seekers

Although domestic pandemic control has improved, international conditions remain severe. Approximately 600,000 overseas returnees entered China's labor market in 2020. In addition, students who had planned to study abroad but were unable due to visa disruptions also joined the domestic job pool. Furthermore, China produced a record-high 8.74 million college graduates in 2020, 400,000 more than in 2019 (Li, Sun, Wu, & Shan, 2020). The delayed job search of the 2020 cohort overlapped with the 2021 cohort, intensifying competition.

Student A observed:

"Many positions were reserved for the 2020 graduates, so our class of 2021 faced even fewer opportunities."

Student B, hoping to return to her hometown in Henan, noted:

"In my province's talent programs, 95% of positions were directed toward the class of 2020, leaving us with little."

These examples illustrate how the pandemic exacerbated the imbalance between job demand and supply, leaving master's graduates facing considerable uncertainty in the post-pandemic job market.

3.3 Shrinking Job Opportunities: Differences Across Disciplines

3.3.1 Preference for Internship Experience

Employers raised standards amid intensified competition, placing greater emphasis on internship experience. Science and engineering students, often exposed to research projects, had an advantage over humanities graduates. Student B (Educational Economics and Management) reflected on her recruitment fair experience:

"Employers really valued off-campus internships. I lacked such experience, which put me at a disadvantage."

Student C (Education) added:

"My internships were mostly from my undergraduate years. Graduate studies left little time for internships, since most of my efforts went into research papers."

3.3.2 Limited Demand for Certain Majors

While engineering graduates considered "which bowl of rice tastes better," humanities graduates often worried about "whether there is rice at all." For example, educational economics and education majors mainly sought teaching, administrative, or civil service positions, but increasing enrollment meant intensifying competition.

Student C highlighted the supply-demand mismatch:

"In the national civil service exam, only 60 positions across the country were open to our major."

Student B, who applied for human resources and administrative jobs, admitted:

"Since my major doesn't match, I couldn't answer specialized HR questions well, unlike management majors."

Student D remarked:

"My friends in computer science had multiple offers with higher pay, while our field has limited options."

Thus, disciplinary differences significantly shaped job prospects. Science and engineering graduates tended to face less pressure due to higher demand and earlier exposure to projects.

4. Employment Anxiety: The Gap Between Ideals and Reality

4.1 Insufficient Preparation

The pandemic disrupted the crucial preparation period. Student G shared:

"Internet firms recruited early. By the time I applied in September, most opportunities were gone. I only had one research institute offer, which I didn't want, so I was very anxious."

Student I noted that the cancellation of the National Teaching Skills Competition in 2020 deprived her cohort of a chance to showcase professional abilities.

4.2 Discrepancy Between Expectations and Reality

Many students cited a gap between their career aspirations and actual opportunities as the main source of stress.

Student C explained:

"Parents and peers expect graduate students to secure good jobs. Seeing my friends succeed while I'm still struggling increases my anxiety."

Student J added:

"I wanted a high-paying position in a real estate company, but due to the pandemic, these positions went to overseas returnees and elite 985 graduates."

Student H, targeting the internet sector, said:

"I aimed for top firms, but many rejected me outright. With only undesirable offers, I was pressured into signing, fearing breach penalties if something better came later."

4.3 Dual Pressure of Graduation and Employment

Graduates balanced research with job hunting. Student E emphasized:

"Publishing papers is essential for further study or research jobs, but the pandemic delayed my progress, limiting opportunities."

Student A admitted:

"I'm more worried about finishing my thesis on time. Without graduation, job hunting becomes impossible."

This demonstrates how academic and employment responsibilities compounded stress.

5. Preference for Stability: Shift Toward Institutional Jobs

The pandemic altered career preferences, with many graduates seeking stability in public institutions (Huang, 2020). Five of the ten interviewees expressed strong interest in civil service or teaching posts.

Student I was determined:

"I've always wanted to become a teacher in a provincial demonstration school. It's secure."

Student B shifted her target from enterprises to civil service:

"Our lack of internships and mismatched majors make us less competitive in business. The stability of civil service is more appealing, especially for women."

Conversely, Student D switched from civil service to enterprises, noting that civil service competition intensified as more students pursued stability.

These accounts reflect the broader trend: post-pandemic, graduates valued job security and risk resistance more than before.

6. Discussion and Conclusion: Strategies for Alleviating Employment Pressure 6.1 Government Level: Optimizing the Employment Environment and Adjusting Policies

As the pandemic is largely under control in China and industries are resuming operations, the government should further optimize the employment environment for master's graduates, strengthen policy adjustments, and encourage rational mobility of talent to broaden job opportunities (Liu, 2011).

First, the state should continue to implement supportive policies for SMEs, ensuring their stable development and ability to provide more jobs. SMEs are the backbone of employment, and private high-tech firms have become a major force in national innovation (Yang & Wang, 2020). Yet surveys indicate that enterprises suffer from shortages of mid- and high-level technical talent compared with universities and research institutes (Zhongguo Association for Science and Technology, 2013).

Second, the government should strengthen policies that guide graduate mobility. While major cities face increasing job pressures, western and remote regions remain underserved. The State Council (2020) issued implementation opinions to expand targeted recruitment, increase grassroots service programs, and encourage graduates to work in less-developed regions. Building on these measures, governments should also publicize grassroots role models, create positive public opinion, and raise compensation for positions in underdeveloped areas to attract talent.

6.2 University Level: Improving Employment Guidance Systems

Universities should enhance the functionality of employment information systems in the context of normalized pandemic prevention. Such systems should integrate job postings, résumé development, test and interview training, psychological counseling, and employment tracking (Guo, 2020). Institutions should also strengthen cooperation with employers, promote university–enterprise and inter-university partnerships, and guide graduates toward policy-supported sectors.

Second, universities must improve employment counseling services. Many interviewees acknowledged that schools provided timely job information and organized on-campus job fairs, which alleviated pressure. However, they also hoped for closer school–employer partnerships and more alumni sharing sessions. Employment guidance departments should regularly survey graduate needs through questionnaires and forums, tailoring services accordingly (Jin, Wei, & Shen, 2020). Additionally, universities should strengthen psychological interventions, helping students reset career plans and manage

expectations in times of crisis (Li, 2020).

Finally, universities should integrate career planning education into graduate curricula. While many institutions have established undergraduate career services, graduate programs are often overlooked. Universities should therefore:

- 1. Provide systematic career planning education to master's students, fostering realistic career outlooks.
- 2. Build a professional team of career counselors offering training, interview workshops, and career fairs.
- 3. Encourage a global perspective while guiding students to adjust expectations and adopt flexible employment mindsets (Ying, 2015).

6.3 Individual Level: Adjusting Employment Expectations

For master's students, self-awareness and adaptability are crucial. They must assess the labor market and their own conditions realistically, improve their ability to gather job information, and adopt pragmatic attitudes toward job searching.

Students should also consciously develop and revise career plans, aligning them with both social needs and personal development (Li, 2019). In addition, they must broaden their horizons, avoid limiting themselves to institutional jobs, and embrace grassroots opportunities. Entrepreneurship, in particular, should be seen as a viable path consistent with government encouragement (Wang & Zhang, 2020).

Only by adjusting expectations, diversifying employment channels, and cultivating innovation can graduates seize opportunities in an otherwise difficult job market.

7. Conclusion

The employment pressure faced by master's graduates in the post-pandemic era reflects the intersection of macroeconomic constraints, policy adjustments, and individual expectations. The findings from this qualitative study of ten graduates demonstrate that the pandemic exacerbated labor market imbalances, intensified competition, and heightened psychological anxiety. Furthermore, disciplinary differences contributed to unequal employment opportunities, with science and engineering graduates generally facing fewer barriers than their peers in the humanities and social sciences.

At the same time, the study highlights a noticeable shift in employment preferences, as many graduates now prioritize stability in the form of civil service and institutional jobs. This tendency underscores the broader influence of crises on risk perception and career planning.

To address these challenges, coordinated efforts are required. At the government

level, policies should strengthen support for SMEs, promote balanced regional development, and create favorable conditions for graduate employment. At the university level, institutions must refine employment guidance systems, integrate career planning into graduate education, and enhance psychological support. At the individual level, graduates need to adopt flexible attitudes, adjust expectations, and consider diverse career paths, including entrepreneurship.

Ultimately, alleviating employment pressure in the post-pandemic era requires a tripartite effort among the state, universities, and individuals. Only through collective engagement can master's graduates better navigate the uncertainties of the labor market and achieve sustainable career development.

Conflict of interest declaration: The author declares that there are no known financial or personal relationships that could inappropriately influence or bias the content of this paper. The research, analysis, and conclusions presented are the author's own and were conducted independently of any external interests.

References

- Guo, Y. (2020). Employment situation and innovation of college graduates' employment under the background of epidemic prevention and control. *China Higher Education*, (Z2), 76–77.
- Gao, W. (2020). The impact of COVID-19 on employment in China and its response. Journal of Graduate School, Chinese Academy of Social Sciences, (03), 21–31.
- Huang, L. (2020). Research on college graduates' employment under the COVID-19 pandemic: Based on an empirical survey in Guangdong. *Youth Journal*, (03), 85–95.
- Jin, W., Wei, S., & Shen, Y. (2020). Practice and reflection on promoting graduate employment under the impact of the COVID-19 pandemic. *Academic Degrees & Graduate Education*, (09), 16–20.
- Li, C. (2020). College students' employment under the impact of the epidemic: Employment pressure, psychological pressure, and changes in employment choices. *Educational Research*, 41(07), 4–16.
- Li, R. (2019). A study on employment issues and countermeasures for Master of Education graduates (Master's thesis, Yunnan Normal University).

- Li, T., Sun, N., Wu, Z., & Shan, N. (2020). An empirical study on the employment situation of college graduates under the impact of COVID-19. *Journal of East China Normal University (Educational Sciences)*, 38(10), 110–126.
- Liu, N. (2011). Analysis of employment intentions of master's graduates: A case study of several universities in Beijing. *Research on Educational Development*, 31(03), 24–27, 38.
- Pan, Y., Zhang, Y., & Liu, Q. (2020). Research on employment situation, problems, and countermeasures of graduate students—Taking "Control Theory and Control Engineering" at Guangxi University of Science and Technology as an example. *Education and Teaching Forum, (12)*, 52–53.
- People's Daily. (2020, February 23). Xi Jinping: Speech at the meeting on coordinating the prevention and control of COVID-19 and economic and social development. Retrieved from http://cpc.people.com.cn/n1/2020/0223/c64094-31600380.html
- State Council. (2020, March 20). Implementation opinions on strengthening employment stabilization measures in response to the impact of COVID-19 (Document No. 6). Retrieved from http://www.gov.cn/zhengce/content/2020-03/20/content-5493574.html
- Wang, T., & Zhang, Q. (2020). The impact of COVID-19 on China's foreign trade enterprises and countermeasures. *Economic Review*, (03), 23–29.
- Wang, Z. (2020). How should education transform in the post-pandemic era? *E-Education Research*, 41(04), 13–20.
- Yang, Y., & Wang, Y. (2020). A study on the destinations and trends of master's graduates in China: Based on the data of MOE-affiliated universities from 2014 to 2018. *Graduate Education Research*, (05), 58–65, 73.
- Zhongguo Association for Science and Technology Department of Research and Publicity. (2013). Survey on the shortage of scientific and technological talents in enterprises. *China Talent*, (15), 9–11.
- Zhu, W., Zhang, P., Li, P., & Wang, Z. (2020). Difficulties of SMEs under the impact of the epidemic and improvement of policy efficiency: Based on two national questionnaire surveys. *Management World*, 36(04), 13–26.
- Ying, H. (2015). An empirical study on the employment pressure of full-time professional master's degree students (Master's thesis, Shanghai Normal University).